Water Quality and Urban Stormwater Pollution Basics

Green Country Stormwater Alliance Employee Training Workshop September 10, 2013 Tulsa Technology Center, Broken Arrow

How much water do we have ?

Ohio's Cuyahoga River on Fire

1968 "Poster Child" of the fledgling environmental movement.

Final recognition that rampant pollution must stop. Led to the 1970-72

"Clean Water Act"

Water Pollution Tragedy – Methylmercury Effects Minamata Bay, Japan - ca 1968

Mercury is a neurotoxin. Industrial pollution in fishing bay. Entire village affected by this tragedy.

Mother with 17 year old daughter.

Oklahoma Historical Superfund Sites

Low pH. Heavy metal toxicity. Extremely costly and difficult to solve.

Oklahoma's Oil Boom Legacy

Many oil and gas production sites are now abandoned.

- Petroleum
- Salts
- Heavy Metals
- Contaminated soils and water

OERB has aggressive cleanup program in Oklahoma.

"Hypoxia" in the Gulf of Mexico

A Nation-Wide Concern

Over-fertilization of streams and rivers

Nitrogen and Phosphorus

Point Sources and Nonpoint Sources

Should we in Oklahoma share responsibility?

Law of Diminishing Returns

Capital

Water Quality Standards

- 1972 Federal Water Pollution Control Act ("Clean Water Act")
- Oklahoma Water Resources Board sets WQS for Oklahoma
- Three Components:

- Assignment of Beneficial Uses
- Narrative and numerical criteria to protect BUs
- Antidegradation Policy

Oklahoma WQS Beneficial Uses

- Public and Private <u>Water Supply</u>
- Emergency <u>Water Supply</u>
- Fish and Wildlife Propagation
 - Habitat Limited Aquatic Community
 - Warm Water Aquatic Community
 - Cool Water Aquatic Community
 - Trout Fishery (put and take)
- <u>Recreation</u> (Primary and Secondary Body Contact)
- <u>Agriculture</u>
- <u>Aesthetics</u>
- <u>Navigation</u>
- Human Consumption (water and fish)
- Culturally Significant

BU combinations are designated for every waterbody in the State.

Biocriteria WQS ~new

- Address Biota of Streams:
 - Macroinvertebrates
 - Fish
- Reference streams set the standard
- Set by Ecoregions
- "Metrics" statistics that evaluate biological community health
- Biocriteria are used to determine "impairment" (303d List)

Nutrients – Uncertain Adoption

Types:

Nitrogen and phosphorus are of primary concern. Each is found in many forms (NO₃, NH₃, ORN, PO₄, cells, etc.).

Sources:

Rural and urban <u>animal wastes</u>. <u>Sewage</u> (treated and bypasses). Rural and urban <u>fertilizers</u>. <u>Naturally occurring</u> in soils and water.

Impacts:

Most forms of N and P are not toxic to fish or animals, but... Nuisance algae – low oxygen, aesthetics, taste and odor in drinking water, fish kills, toxic algal blooms.

Nutrient Criteria for Oklahoma Scenic Rivers

The first nutrient <u>numerical criteria</u> in Oklahoma

- Six rivers designated "Scenic" by the Oklahoma legislature, not a federal designation.
- Illinois River is most noteworthy.
- Oklahoma claims excess loads of phosphorus from Arkansas agriculture (mostly poultry).
- OWRB adopted numerical standard for TP of 0.037 mg/L for all Oklahoma Scenic Rivers.

Urban Pollution

Point Source vs. Nonpoint Source

Point Sources

<u>Treated wastewater</u> - has NPDES discharge permits with penalty provisions and enforcement.

<u>Technology-driven</u> pollution reduction.

Nonpoint Sources

<u>Untreated</u> runoff - has no * discharge permits and no penalty provisions.

Voluntary pollution reduction.

* Exceptions: urban stormwater, CAFOs.

Pollutants in Urban Stormwater

- Sediment
- Nutrients
- Oxygen-Demanding Substances
- Pathogens
- Trash

- Road Salts
- Oil and Grease
- Heavy Metals
- Heat
- Petroleum
- Pesticides
- Other organics

Pollutants from Local Businesses

What most people think are the greatest sources of pollution.

Pollutants from Homes

Paints and solvents

Fertilizers and pesticides

Pet waste (pathogens)

Toxics

Nutrients

Sediment

pН

Oils

Bacteria

Trash

Swimming pool drain water with chlorine

Construction Site Runoff

To Local Creek

Harms Stream Habitat

Urban / Suburban Bacteria Sources

<u>Controllable</u>

Partly Controllable

Uncontrollables

Impaired Waterbodies and TMDLs

303(d) Impairment

A stream or lake can be listed for any combination of parameters:

Dissolved oxygen, nutrients Toxics (metals, organics, pesticides, "unknown") Sediment, suspended solids, turbidity Pathogens (bacteria) Biological (fish, macroinvertebrates) pH

Oil & grease

Chloride, sulfate, TDS

303(d) = Category 5 ~~"TMDL List"

- Bi-annual "Oklahoma <u>Integrated Water Quality</u> <u>Assessment Report</u>" (2010 and 2012)
- Listed segments <u>require a TMDL</u>.
- Many <u>segments have changed</u> between 2010 and 2012.
- Latest changes reflect <u>new trends</u> in water quality concerns:
 - away from D.O. and "metals"

– now bacteria, dissolved solids and biological.

Final 2010 303(d) Impaired Waterbodies in Tulsa Metropolitan Area

Map Prepared by INCC May 2012

What is a TMDL ?

"Total Maximum Daily Load"

Calculates the <u>maximum allowable pollutant loading</u> for a waterbody.

All <u>point source</u> loads (WLAs) + all <u>nonpoint source</u> loads (LAs) + a margin of safety (MOS).

Special WLA just for stormwater permittees: "WLA_MS4"

TMDL = Σ WLA + Σ LA + Background + MOS

TMDL Appendix F for Stormwater

"Compliance with the following provisions will constitute compliance with the requirements of this TMDL".

- 1. Develop A Bacteria Reduction Plan
- 2. Develop Or Participate In A Bacteria Monitoring Program
- 3. Annual Reporting

Some TMDLs do not have Stormwater Permit requirements (e.g., Turbidity TMDLs)

Existing Water Quality Data

Trend Monitoring in Oklahoma

- Beneficial Use Monitoring Program (BUMP)
 Oklahoma Water Resources Board
- Rotating Basin Monitoring Program ("RBMP")
 Oklahoma Conservation Commission
- Biotrend & Toxics in Fish Monitoring Programs
 - Oklahoma Department of Environmental Quality
- USGS Stream Monitoring Program
 U.S. Geological Survey

Self-Monitoring by Permittees

- OPDES and NPDES <u>discharge permittees</u> must perform monthly self-monitoring.
- <u>Parameters</u> relate to their permits.
- High quality of data is required.
- Inspected by ODEQ and EPA.
- <u>Violations</u> can lead to penalties.

Achieving Statewide Coverage Through Coordination

BUMP and RBMP sites are chosen to achieve maximum coverage with no overlap

- △ 1998 USGS Water Quality Monitoring Sites
- BUMP Fixed Location Stream Sites
- Proposed Rotating Basin Monitoring Sites
- Data Gaps Monitoring Sites
- Fifth & Sixth Order Streams
- Seventh through Ninth Order Streams

Thank you – any questions ?

